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SUMMARY

The effort conducted herein was sponsored by the Space Propulsion Technology Division, _

NASA Lewis Research Center, Cleveland, Ohio, under Contract NAS3-23773, "Orbit

Transfer Rocket Engine Technology Program." The technical effort of this contract was

completed from December 1983 through December 1988.

The overall objective of this task was to expodmentally evaluate the performance of the

high velocity ratio diffusing crossover used in the first and second stages of the MK49-F

high pressure fuel turbopump, which is used on the RS-44 Orbital Transfer Vehicle

rocket engine. With the diffuser inlet conditions generated by a scaled up model of the

MK49-F inducer and impeller, the performance of these pumping elements and the high

velocity ratio diffusing crossover were determined using water and air as the pumped

fluids. The air tests were Included to obtain performance data over a wide range of

Reynolds number. These performance surveys were to be used to verify the design of the

high velocity ratio diffusing crossover, and correct any design deficiencies that were

found. Since the MK49-F was tested prior to the completion of this test program, the

data from the MK49-F was used as a comparison for the water and air test data.

To complete the technical requirements of this program, a tester, utilizing a 2.85 times

scale inducer, impeller, and diffuser crossover system, was designed, fabricated, and

tested in both air and water.

The design of the high velocity ratio diffusing crossover was based on integrating the

scaled up MK49-F first stage components with the existing SSME HPFTP tester. By

using the existing tester hardware, design and fabrication costs were saved. Additional

costs were saved by fabricating the new crossover tester components from common

aluminum alloys to minimize the machining complexities and procurement costs.

A total of nine (9) tests were conducted on the north powerhead of the Pump Test Facility

at the Engineering Development Laboratory from September 1988 to October 1988. The

first two (2) tests of the diffusing crossover were conducted in air, while the remaining

seven (7) tests were conducted in water. Both, the air and water tests were conducted at

a shaft speed of 6322 rpm.

RIIRD89-111
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In air, the head versus flow (H-Q) test data determined that the upcomer diffuser in the

crossover was stalled for all the flow conditions attempted. The stall was caused by

increased boundary layer blockage due to the low Reynolds number resulting in the

impeller discharge flow entering the diffuser inlet at an angle and velocity, which would

produce a flow separation in the diffuser. Air test data compared well with the analytic

predictions and MK49-F hydrogen data for the impeller and the inducer head

performance, clearly showing that the stall was in the diffuser.

H-Q tests in water, from 65 to 140% of design flow, were conducted. The overall stage

head measured these tests was only 4% lower than the prediction. Again, the

performance of the inducer and impeller were compared with the available resources.

Dudng the H-Q tests, the upcomer diffuser stall point was determined to be at a slightly

lower flow than predicted, and the hysteresis region was clearly evident. The head loss

during stall was not severe which was Indicative of a diffuser leading edge stall

characteristic. Internal pressure distributions were also examined to evaluate the

inducer, impeller, and various positions within the diffuser crossover system. Suction

performance tests from 80% to 124% of design flow were conducted, which established

the minimum inlet Net Positive Suction Head (NPSH). The performance was lower than

the ideal potential, but a lower performance was expected with the design characteristics

scaled from the smaller MK49-F. The performance of the tester, however, exceeded the

minimum design requirements established for the MK49-F turbopump.

The test data showed 95% of the overall diffusion being accomplished by the upcomer

portion of the crossover passage, as predicted. By calculating the required diffuser inlet

boundary layer blockage to match the test data and using the Loss Isolation program to

determine the vaneless area diffusion, the mean pressure recovery coefficient from the

test data compared favorably with the predictions.

The technique generated to analyze the data will be beneficial for the design and analysis

of future diffusing crossover passages. The data generated in this test program verified

the methods used at Rocketdyne to design and predict the performance of pumping

elements and high velocity ratio diffusing crossovers. The data generated in this

program will also be of value in further anchoring the predictive codes of other designs.

RI/RD89-111
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Multistage pumps require the use of crossover passages to convey the fluid from the exit

of one impeller to the Inlet of the next impeller. The MK49-F, which is used on the

15,000 Ibf thrust Orbital Transfer Vehicle (OTV) engine, is a three stage centrifugal

high-pressure liquid hydrogen turbopump. A cross-section of the MK49-F turbopump

is presented in Figure 1 showing the location of the two interstage crossovers. The

MK49-F uses seventeen continuous passage crossovers between each centrifugal

impeller stage. Each passage consists a radially out diffuser called the "upcomer',

followed by a radially Inward diffuser called the "downcomer'. A low turning loss

section, called the transition, connects the two diffuser sections. ......

To develop the 4600 psia discharge pressure required by the advanced expander cycle

OTV engine, a high impeller exit velocity is required. However, relatively low velocity

is required at the inlet of the next impeller for the best overall pump performance. The

result Is a large diffuser inlet velocity to exit velocity ratio through the crossover.

The MK49-F design uses a velocity ratio of 6.23, which approaches the diffusion limit

for stable efficient design. Previous diffusing crossover designs, at Rocketdyne, used

velocity ratios that were lower, for example, 5.46 for the MK48-F, and 3.0 for the

SSME HPFTP (MK38-F). With these high diffusion rates, theboundary layer flows

must be carefully controlled to preclude stall, while operating over the wide range of

pump flows required by the engine system.

The design of the crossover passages was based on advanced analytical procedures

anchored by tests of stationary two-dimensional diffusers with steady flow. In the case

of centrifugal pumps, however, the flow leaving the rotating impeller appears to the

stationary diffusion system as an unsteady non-uniform flow field with potential inlet

boundary layers even larger than normally encountered in laboratory tests of static

diffusers. To accurately assess the design of the high velocity ratio diffusing crossover,

it was required that the impeller flow be accurately simulated. This could only be

achieved by using a scaled-up version of the MK49-F impeller.

A highly instrumented tester was designed and fabricated which would simulate the

MK49-F first stage pumping elements and crossover passages. TO take advantage of

existing test facility hardware, a scaled up model of the stage was c_osen with a scale

factor of 2.85. This scaled up model also served to increase the Reynolds number for

RI/RD89-111
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the model test to bdng It closer to the Reynolds number of operation in hydrogen of the

full scale MK49-F.

Table 1 gives the basic dimensions and operating parameters of both the MK49-F pump

for full speed operation in hydrogen and the scale up model for the subject test program.

Tests of the high velocity ratio diffusing crossover tester with unsteady whirling flow

from the exit of the scaled up impeller, were conducted to evaluate the influences of the

large-scale turbulence, non-uniform velocity profile, and non-steady velocity on the

MK49-F stage performance and efficiency. Tests were conducted in two fluids, water

and air, to determine the effects on performance over a wide range of Reynolds number.

Table 1 - Basic Parametric Information

MK49-F Turbopump versus Crossover Test Rig

.... p_arameter

Inducer Tip Diameter (inch)

Impeller Tip Diameter (inch)

Diffuser Inlet Diameter (inch)

Number of Blades:
Inducer

Impeller
Diffuser

Inducer Flow Coeff. ((I)-Cm/Ut)"

Design Speed (rpm)

Design Flow (gpm)

Reynolds Number °*

MK49-F

Turbopump

LH2
m

1.95

3.90

4.30

4
4+4
17

0.10

110,000

436

7.6xl 07 *°*

Crossover Tester

Water Air

5.56

11.124

12.25

4
4+4
17

0.10

6322

583

2.31x107

5.56

11.124

12.25

.

4+4
17

0.10

6322

583

1.65x106

Inlet Flow Coefficient, _, where Cm is the meddional fluid velocity and Ut iS the

inducer tip speed.
Reynolds number based on Impeller diameter and speed.

At 33,400 rpm, Reynolds number drops to 2.31x107.

RI/RD89-111
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TECHNICAL DISCUSSION

DESIGN AND FABRICATION

Tester Configuration & Layout

Analytical and computer predictions determined that, for optimum performance of the

RS-44 advanced expander cycle engine, an interstage diffusion of 6.23 for the MK49-F

would result. However, there was little published data on multistage pump crossovers

having high diffusion velocity ratios. Rocketdyne's experience was limited to a

maximum diffusion velocity ratio of 5.46 used in the MK48-F turbopump. The high

diffusion rate of the MK49-F was suffidently beyond the current experience base that a

test program to evaluate the performance of the high velocity ratio diffusing crossover

was required. The overall objective was to design a tester and experimentally evaluate

the performance of the high velocity ratio diffusing crossover used in the first and

second stages of the MK49-F high pressure fuel turbopump.

The high velocity ratio diffusing crossover tester, shown in Figure 2, was designed with

two major design requirements imposed. The first requirement was to design the

crossover tester around the dimensions of the existing SSME HPFTP tester interfaces to

minimize the tester design and fabrication costs. The second requirement was to

incorporate as much internal instrumentation as possible to maximize the information

obtained during testing of the diffusing crossover passage and MK49-F pumping

elements.

A scale factor of 2.85 was determined from the SSME HPFTP impeller tester hardware.

The crossover tester layout was then generated by maintaining these interface

geometries and directly scaling the MK49-F turbopump pump elements. Figure 3 shows

the cross-section of the HPFTP tester shaft, discharge manifold, bearing carrier, face

seal, and bearing assembly which were used by the crossover tester. The hardware

parts list for the High Velocity Ratio Diffusing Crossover tester are shown in Table 2.

The MK49-F inducer, impeller, and crossover housing, components were scaled up to

mate with the HPFTP tester discharge manifold. A scale factor of 2.85 was used to

Increase the size of the MK49-F impeller from 3.900 inches in diameter to a size of

11.124 inches. With this scale factor established, the crossover, the impeller, and the

inducer were designed.

RI/RD89-111
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Figure 2 - Crossover Tester Cross-Section ;
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Figure 3 - Existing SSME HPFTP Tester_Hardware
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Table 2 - Crossover Tester Parts List

CR-194447

HIGH VELOCITY RATIO DIFFUSING CROSSOVER TESTER

PARTS LIST

PART NO, DESCRIPTION

- L-L

7R00i7922-5 _BE _-_

7R0017923-3

7R0017924-3

7R0017925-3

7R00!7927-3 ..

7R0017927-5

7R0017928-3

7R0017928-5

HOUSING, PUMP END

COVER PLATE, BEARING PRELOAD

CROSSOVER HOUSING

FACE SEAL MATINGRING ....
: =

THRUST DISK

THRUST D_SK SEAL

RETAINER, THRUST DISK SEAL

7R0017930-I IMPELLER

7R0017931-I INDUCER

7R0017932-3 NUT (INDUCER)

7R0017933"3 LOCK (INDUCER)
7R0017934-3 SPA_

VROOlV935-3 (IMPEU R)
7R0017936-3

7R0017938-3

SPACER

RETAINER

QNTY

6

1

1

1

1

1

1

1

1

1

1

1

1

1

7R0017940-3 SEA_, LABY
7RO017940x5

7R0017941---3 NuT(_)

7R0017942-3 SPACER

7R0017943-3 SCREEN

7R0017944-I INLET

7R0017945-3 SPACER

7R0017950"3 _BES

7R0033904-3 SPACER

RETAINER, LABY S_ 1

1

1

1

1

1

2

1

MS 9390-580 PIN 3

T-5100073-120 FACE SEAL, SEALOL:3-3-B002B0-44

T-5100073-I08 SPACER

T-5100073-I04 NUT

T-5100073-501 SLEEVE

T-5100073-801 COLLAR

T-5100073-I04 SCREW, SET

SKF 7214 BEA BEARING

1

1

1

1

2

EWR307280-007 MAINFOLD

EWR306802-003 SHAFT

EWR306803-003 BEARING CARRIER

1

1

1

RIIRD89-111
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High Velocity Ratio Diffusing Crossover

A pair of straight channel type vaned diffusers, with square cross-section separated by a

variable cross-section turning channel, were chosen for the MK49-F. The same concept

was chosen for the lower area ratio SSME HPFTP diffusion system which had

demonstrated an outstanding efficiency.

For a straight channel diffuser design, maximum performance requires a uniform flow

field at the diffuser Inlet, or throat. To improve the Inlet flow field and reduce the

perturbations produced by the passing impeller blades, a vaneless entrance region, just

upstream of the diffuser throat, was included in the design. A detailed vane leading edge

geometry and flow pattern relationship was Investigated, using available analytical

codes, to determine the diffuser Inlet flow angle and velocity from the Impeller. From

this information, the inlet vane angle, throat area, and number of crossover passages

were determined. Once the Inlet geometries were satisfied and the throat flow field

established, the diffuser geometry was produced.

At the exit of the upcomer diffuser, a three-dimensional transition section turns the

flow radially Inward to the inlet of the downcomer diffuser, forming a continuous

crossover passage, as seen in Figure 4. The turning channel cross-section changes

continuously through the turn to minimize the static pressure gradient across the

passage. These pressure gradients, created by the centrifugal force of the fluid in the

turn would induce secondary flows which would reduce the overall crossover

performance. The design of the turning channel required the use of computer-aided

design (CAD) to produce the three dimensional lay out.

Figure 5 shows the ceramic casting core assembly of the seventeen crossover passages of

the MK49-F turbopump. The High Velocity Ratio Diffusing Crossover tester passages

were scaled up directly from the coordinates generated on CAD for the MK49-F

crossover.

Initial bids for casting the aluminum crossover housing resulted in only one bidder

response at a cost three times greater than the estimated costs based on the MK49-F

crossover cores. It was decided that casting the crossover from a high strength plastic

would save both cost and schedule. By casting with a plastic, costs would be saved in raw

materials and "hard" tooling which are required for metal castings. A plastic, FR-

40/5481C epoxy, crossover housing was designed, with an aluminum reinforcing ring.

RI/RD89-111
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Figure 5 - MK49-F Turbopump Crossover Casting Core

t/_ IJ.I

_|
= L

RI/RD89-111
-12-



CR-194447

Td-Models was placed under contract to construct the core and tooling required to

produce the plastic crossover housing, while the actual pouring of the part would be

conducted at Rocketdyne. However, when Td-Models completed the core box, their costs

exceeded the purchase agreement. As a result, Rocketdyne took delivery of the core box

only.

Using the core box and FR-40/5481C epoxy provided by Rocketdyne, A & M Model

Makers was contracted to cast the crossover housing. Wax cores were successfully made

and assembled into a "negative" of the crossover. The plan was to pour the plastic into

the- mold surrounding the cores, and then retumthe-crOSsovel: to _cket_iie for: elevated

temperature curing, which would promote the greatest strength of the epoxy. The

pouring technique was designed to slowly cure the casting at an elevated temperature to

reduce risk of cracking the_ossover housing; However_ when the pour of the plastic

proceeded, cracks began to appear almost immedlately. By the completion of the pour,

the houslng was riddled with cracks. The cracking was caused by normal shrinkage of

the plastic, the alumlnum relnforcement ring restricting any movement by the

shrinking plastic.

The crossover housing drawing, 7R0017925, was modified to fabricate the part from

aluminum alloy 356. Burrows Pattern Works was contracted to fabricate a set of

ceramic cores from the existing core box. The cores were dimensionally Inspected and

found to be within the tolerance of the drawing. Enough cores were fabricated by

Burrows Pattern Works to produce four crossover housings. The ceramic cores and the

core box were delivered to Wellman Dynamics for casting. Figure 6 shows one of

seventeen crossover cores which were assembled for each crossover housing pour.

: :

Upon the attempt to cast the crossover housing, Wellman found that the Burrows Pattem

Works cores were unusable. The long thin crossover inlet necessitated a high percentage

of core binder. During the pour, the binder vaporized at the temperatures of molten

aluminum, causing blows and cold shuts, ruining the casting. Wellman was forced to

make their own cores using alumina sand and glass reinforcing rods running through the

center of each core. Rgure 7 shows the completed Wellman core assembly. Prior to the

first pour by We,man, the passage cores were dimensionally inspected and were found

...... to meet the tolerance requirements of the drawing. _n seven_ attempts +to cast the

crossover, only one good crossover housing was produced. Figure 8 shows the diffuser

inlet vanes of this crossover housing. Rocketdyne released Wellman of the requirement

for two castings, because of the excessive costs required to achieve a useable product.
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Figure 6 - Individual Casting Core for Crossover Tester .............
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Figure 7 - Assembled Casting Cores for Crossover Tester
by Wellman
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Impeller

The crossover tester impeller design, 7R0017930, maintained the critical dimensions

of the MK49-F, such as blade geometry, inlet area, exit area, tip width, and shroud

contours. However, the MK49-F Impeller was machined in two pieces from titanium in

the form of a pre-impeller and main impeller. The aluminum alloy 6061-T6 impeller

was also designed and fabricated in two pieces, but in the form of a shroudiess impeller

and a front shroud. The Impeller blades and face were numerical control (NC) machined

to produce the complicated flow passage. The scaled-up Impeller with the front shroud

removed can be seen in Figure 9. Once the Impeller blades were machined and

dimensionally inspected, the front shroud was bonded to the impeller face using a

furnace braze process. At the completion of the furnace braze operation, the impeller

was machined to final dimensions and is shown in Figure 10.

also scaled directly from the MK49-F inducer using CAD.

is shown in Figure 11.

Inducer

The crossover tester inducer, 7R0017931, was NC machined from aluminum alloy

7075-T73. The inducer blade coordinates, hub contour, and leading edge contours were

The crossover tester inducer

Dynamic Soft Wear Ring Seals

To gain some experience with the soft seal technology, being developed concurrently in

task B.5 of this contract, cast in place polyurethane seals were incorporated in the

inducer tunnel and the impeller interstage seal. The inducer seal was centrifugally cast

by poudng the seal matedal, Hexcel 3125, in the inducer tunnel, while rotating the

part on a lathe for several hours. A similar technique was used to cast the interstage

seal in the inner diameter of the crossover housing. The seals were then machined to

final bore dimensions after the casting and curing processes were completed. The casting

and subsequent machining techniques were very successful. A photograph of the soft seal

matedal in the Inducer tunnel, 7R0017944, is shown in Figure 12.

The impeller front wear ring labyrinth seal and thrust disk seal also used soft seal

technology and were machined from KeI-F stock. These seals went through several

curing cycles before they were machined to their final dimensions. The clearances for

the inducer tunnel, interstage seal, and the front _vear ring labyrinth seal were also .....

scaled by 2.85 from the MK49-F design, as shown in Table 3.
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Figure 9 - Crossover Tester Impeller with Shroud Removed
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Table 3 - Operating Clearance Comparlson
Crossover Tester vs. MK49-F.,::.;.

Clearance

Impeller Tip

Diametral

Location

Impeller Front Hub Labyrinth

Inducer Tip

Interstage Seal

Clearance (inch

Crossover
Tester

0.710

0.023

0.029

0.023

MK49-F
Turboaump

0.25O

0.008

0.010

0.008

Thrust Disk

Hydrodynamic _analysis of the test pump showed the potential of |arge loads with some

uncertainty of the load direction due to the lack of definitive pressure profiles around

the Impeller shrouds. With moderate changes in the effective vortex strengths in these

::: sh_roud areas,_the total net axial force could change direction and magnitude. To better

handle this potential load variation the drive end bearing stop was replaced with a

.... belleville spring to accommodate the thrust without unloading. Also, a thrust

..... _mPensating_d°isk,--7-R0-01-7;927_ as-seen-in Figul:e 13, was added to the design. To cross

the gap between the volute manifold and the bearing carrier, transfer tubes,

7R0017922, were designed to allow the thrust disk back pressure to be vented through

a control valve overboa_- By allowing some of the crossover discharge flow to leakpast

the thrust disk tip seal into the thrust disk drain cavity, the pressure behind the disk

could be regulated to produce t_he desired resultant axial thrust. Blank transfer tubes

(no through holes) were also designed to return the manifold to its SSME test condition.

A thermodynamic computer model of the pump was developed tO predict the axial load

over the anucipated test range. The pressure of 461 psla in the thrust disk drain cavity

was selected-topreclude the direction of the axial thrust at the 80% design flow towards

the drive end. This pressure yields a uniform thrust direction with a maximum

amplitude of 3555 lb. toward the pump Inlet at 120% design flow as shown in Table 4.

Also seen in Table 4, the loads produced at 60 and 70 percent of design flow are larger

than at 80 percent because of the predicted stall characteristic of the pump. The axial

load in air was considered negligible.
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Table 4 Hydrodynamic Performance and Axial Load Predictions
Crossover Tester Internal Static Pressures (psia) in Water

Tester Location

Inducer Inlet Pr

Inducer Discharge Pr

Impeller Discharge Pr

Imp Front Shroud Hub Pr

Imp Rear Shroud Hub Pr

Crossover Disch Pr

Thrust Disk Front Pr

Thrust Disk Rear Pr

Axial Thrust (Ibfl *

% Flow

60%

94.3

163

558

365

529

711

724

461

of Design

70% 80%

94.3 94.3

160! 156

556! 553

362 360

527 523

708 741

720 751

461 461

100%

_d :_(583 gpm)

110% 120%

94.4 94.3

141 114

541 509

347 315

512 48O

710 649

716 658

461 461

1336 1474 43 1333

94.3

129

528

335

499

685i

693

461

2273 3555

* Positive Load towards the Pump Inlet.

Ball Bearings and Shaft Support System

In addition to adding the thrust disk, a redesign of the pump bearing system was also

required. The original 70mm bore conrad ball bearings, used in the SSME HPFTP

tester, could not be used due to the high variations in axial load for the flow ranges to be

tested. The maximum axial load capacity calculated for these bearings was 2500 lb. It

was therefore necessary to increase the ball bearing axial load capacity. As a result, a

pair of 70mm J type angular contact ball bearings were procured to replace the original

conrad bearings. Mechanical preloading was used to obtain the appropriate radial

stiffness and accommodate axial translation..

DESIGN SUPPORT ANALYSIS

Rotordynamics

In early 1984, the preliminary MK49-F crossoverS:tester design, without the thrust

disk, was analyzed to predict the critical speeds, shaft mode shapes, and shaft deflection.

The rotating assembly consisted of a single stage inducer and impeller subassembly

cantilevered on a shaft supported by two ball bearings. The finite element model of the

rotor is shown in Figure 14. The rotor was segmented into 10 weight groups and 25

finite elements. The bearings were represented as translational springs to ground (rigid

casing), and the assembly drive coupling shaft was assumed to add weight but no radial

stiffness to the system.
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The first three critical speeds of the rotor, pumping water and air respectively, are

shown in Figures 15 and 16 as a function of bearing stiffness. The mode shapes

corresponding to these critical speeds, for a bearing stiffness of 500,000 Ib/in., are

given in Figure 17. For the tester running in water, the operating speed is 6,322 rpm.

Observing the normal rotordynamic practice of not operating within 20% of a critical

speed, a first critical speed of at least 7590 rpm is required. According to Figure 15, if

the bearings have a minimum stiffness of approximately 440,000 Ib/in., the first

critical speed would be over 7590 RPM, and the machine could operate safely at 6,322

RPM. The preloaded angular contact ball bearings easily met these radial stiffness

requirements.

With air as the pumped fluid, a similar critical speed analysis was conducted with

proposed operating speeds of 6,322 rpm and 14,000 rpm. This analysis was required

because in the previous analysis, water being pumped adds mass and damping to the rotor

system, while air, due to its low density and compressibility, provides less mass and

virtually no damping. Again, a 20% margin on critical speeds was maintained and no

critical speeds were found between 5,000 and 7,500 rpm and between 11,670 and

17,500 rpm for the predicted bearing stiffnesses, as seen in Figure 16. It was noted for

the 14,000 rpm case, that the tester would run between the first and second critical

speeds and below twice the first critical speed eliminating the requirement for a rotor

stability analysis. The critical speed analysis showed that this machine could operate

safely at either of the desired shaft speeds.

Due to the overhung nature of the crossover tester design, an unbalance response

analysis was performed to determine the potential rubbing due to rotor deflection.

Rgure 18 and 19 show the predicted inducer and impeller deflections, respectively, as a

function of rotor speed with 500,000 Ib/in beadng stiffnesses. At 6,322 rpm, the

predicted deflections were significantly less than the radial clearances built into the

tester as shown earlier in Table 2. Figures 20 and 21 show similar inducer and

impeller deflections, respectively, with air as the pumped fluid, as a function of shaft

speed for bearing stiffnesses of 500,000 Ib/in. As shown in these figures, large

deflections would be Incurred if the tester speed dwelled around the first critical speed

of 8,000 rpm.
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MK-49F CROSSOVERTESTER (WATER)

MODE SHAPES FOR K_ : 500,000 LB/IN
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Figure 18 . Inducer Deflections in

KB = 500,000 LB/IN

Water

• v MIS $ Z m18

I--,4

I--

w

._1

u3
Iw,4

UI¢IN.FeC_) AgPONIE OF f11C4WOIP'_'t,NBIWCItONUOVUt
I all-IN LkB_ ON IIIPELU_, OPE_TING IN k1_11_

.00090

.Hem

,ONN

.OeO?1_

.OeO1'O

•00065

•00060

•NOS&

.ONSO

.OO04G

•00040

.OOOl

.NON

.OOOl_

.OOUO

.0e015

°Nell

44O4 WOO

R_

44OO

J
/

/
/

/

/
/

_UV

Operating Speed

RI/RD89-111
-30-



CR-194447

• ¥N[%$ t Z _Z$

Figure 19 Impeller Tip Deflections
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Figure 20 . Inducer Deflections In

KB = 500,000 LB/IN
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As discussed earlier, the design for the High Velocity Ratio Diffusing Crossover tester

was modified to incorporate the thrust disk, however, this was accomplished after the

initial rotordynamic analyses were completed. To determine if this modification would

significantly alter the rotordynamic char"acteristics of the tester, the finite element

model of the rotor was updated and its critical speeds, operating in water, were

recalculated. Close comparison of this critical speed map with that of the old design

showed that the first cdtical speed was virtually unaffected by the addition of the thrust

disk because of its close proximity to the pump end bearing.

Structural Analysis

An analysis of the Crossover Tester assembly was performed for operating conditions of

6322 rpm for water testing and 14500 rpm for air testing, and for a maximum

discharge pressure of 1111 psia in water. The analysis covered the major

hydrodynamic test components, including the inducer, impeller, inlet, and crossover. In

addition, new hardware required by the bearing support system redesign effort,

Including bearing preload belleville spring sizing and face seal retainer deflections,

were analyzed.

Because of the geometric similarity between the tester inducer, impeller and crossover

and their counterparts .from the MK49-F turbopump, stresses in these tester parts

were determined by applying scaling factors to the MK49-F part stresses. Scale factors

accounting for differences in tester and turbopump tip speeds, fluid densities, material

densities, and static pressures were used as appropriate. Centrifugal stresses in the

Inducer and impeller were less than 10% of those in the turbopump. Fluid pressure

stresses on the Inducer and Impeller blades and on the crossover were 38% of those

occurring In the turbopump. Although the aluminum alloy, 6061-T6, used on the tester

components, had significantly lower strength than the Inconel 718 (inducer), titanium

(impeller) and Inconel 625 (crossover) used on the turbopump, the tester parts were

shown to have higher factors of safety because of the lower loading.

TEST PLAN

Test Matrix

The planned high velocity ratio diffusing crossover tests were divided into four pads;

H-Q tests in water, crossover stall mapping in water, suction performance tests in

water, and H-Q tests in air. These tests were run to establish the diffusion capability of

the crossover passage, as well as, verify the performance and efficiency of the scaled up
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model of the MK49-F first stage pumping elements. The planned test matrix is shown in

Table 5. The yaw probe survey tests described in Table 5 were later deleted from the

test matrix due to cost and schedule constraints coupled with the fact that these results

were not critical to accomplishing the basic objectives of the program. Only in the event

of a serious stall in the downcomer would the yaw data become critical.

Test Instrumentation

Instrumentation for the High Velocity Ratio Diffusing Crossover tests consisted of those

parameters necessary to determine pressure, temperature, flowrate, speed, torque, and

acceleration. In addition, adequate instrumentation was required of the facility to safely

conduct the proposed tests and provide the Information required for facility diagnostics.

The low and high frequency data recorded provided the information necessary to

Investigate the performance and efficiency of the MK49-F turbopump high velocity ratio

diffusing crossover and its pumping elements.

The instrumentation used, including parameter nomenclature, transducer ranges,

redline limits, recording device, and parameter displays, for the water test sedes are

shown In Table 6. Redundancy on all critical parameter systems were maintained.

Figure 22 shows the locations of the vadous instrumentation types available on the

crossover hardware. The three Kiel probes at the discharge of the crossover are located

at three different radial heights: 1/4 passage, mid-height, 3/4 passage, from hub to tip.

The instrumentation used for the air test series are shown in Table 7. The air tests

required less instrumentation to obtain the necessary performance information.

All low frequency data was recorded on a Digital Data Acquisition System (DDAS). The

DDAS also provides test sequence control and redline monitoring, in addition to recording

the low frequency data and facility events.

Some selected parameters were recorded in real-time on strip charts, as seen on the

instrumentation lists in Tables 6 and 7, shown previously. During suction performance

(cavitation) tests, monitoring of inlet pressure decay rate and pump differential

pressure, &P, were essential to successfully and safely control the test.

Provision was also made in the hardware design for laser velocimeter measurements at

the impeller discharge (diffuser inlet). The measurements would have been able to

define the blade-to-blade flowfield leaving the impeller at different planes from the tip
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Table 5 - Crossover Planned Test Matrix

TEST I TEST I TEST I FLOW I TEST I SPEED I DATA I PROBE

No. I TYPE I FLUID I (GPN) J DESCRIPTION I (RWm I S_PLING I TYPE
.............................................----------------'''''''''''''''''''''''''''''''''''

1

2

3

4

5

6

7

8

9

10

11

12

13

CHECK OUT

HEAD vs. FLOW

H-Q STALL MAPPING

CAVITATION

CAVITATION

CAVITATION

CAVITATION

CAVITATION

CAVITATION

CAVITATION

PROBESURVEY POS#1I
i

PROBE SURVEY POS#2[

I
IPROBE SURVEY POS_I

H20

H20

H20

N20

H20

H20

N20

H20

H20

H20

H20

H20

H20

582

408-694

233-408

582

640

698

523

465

407

349

408-694

408-694

408-694

ESTAB AXIAL LOAD

H-Q W/ PROBE

HQ 60-90_.Q

NPSN g IO0_,Q

NPSH _ 110_

NPSH _ 1207_

NPSH a90_Q

NPSH _ 80_Q

NPSH Q 70"/_

NPSH g 60_Q

HQ 70-1207.0

HQ 70-1207a_

HQ 70-120_

6322

6322

6322

6322

6322

6322

6322

6322

6322

6322

6322

6322

6322

20 SCANS

20 SCANS

20 SCANS

CONTINUOUS

CONTINUOUS

CONTINUOUS

CONTINUOUS

CONTINUOUS

CONTINUOUS I

CONTINUOUS

20 SCANS

20 SCANS

20 SCANS

KIEL

KIEL

KIEL

KIEL

KIEL

KIEL

KIEL

KIEL

KIEL

KIEL

YAW

YAW

YAM

I I I...---

....................................................................... T..... -,, .........

TEST I TEST I TEST I FLOW I TEST I SPEED I DATA I PROBE
NO. l TYPE I FLUID J (CFS) 1 DESCRIPTION I (RPN) 1 SAMPLING 1 TYPE

I ................................................................... '"_ .........................
I I I I I I I I
i 14 I HEAD vs. FLOW I AIR i0.91.1.56l H-Q W/ PROBE 1 6322 I 20 SCANS I KIEL

I I I I I I I I
..... 0°...... ...... . ...... . .......... ............----------'''-'''''''''''''''''''''''''''''''''''

* These tests were tater deteted
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Table 6 - Water Test Instrumentation List

PARANETER PA_ETER MANE RANGE l REDLINE I DATA RECORDING AND DISPLAY

NUMBER PSIG l HIM/MAX l DIGITAL l STRP CHRT i CRT I HF DIGITAL I

I`_-_Z_I8ss_zZtlZllBs_I_lIlBlI_Z_zssmzIzz_ZZ_smzZZlimlzx_l1Z_Z_Z__Z_ZiiZ_ZZZzZZ_ZZZ_=Z_ZI

1 INLET STATIC PRESS #1 100 PSIA X X

2 INLET STATIC PRESS #2 100 PSIA X

3 INDUCER DISCH PRESS #1 0-500 X X

4 I_R OISCH PRESS #2 0-500 X

5 IMP FRNT SHRD PR #1 0-2000 X

6 |NP FRNT SHRD PR #2 0-1000 X

7 REAR SHRD PR #1 0-1000 X

8 R_R SHRD PR #2 0-20_ X

9 INP DISCH PR 0 0-1000 X X

10 IMP DISCH PR 45 0-2000 X

12 UPC COMST SEC PR #2 0-2000 X

13 UPC COMST SEC PR #3 0-2000 X

14 UPC CONST SEC PR #4 0-2000 X

15 TRANSITIOM PR #1 0-2000 X X

18 DUN DIFF DISCH PR #2 0-_000 X

19 DUN NID-DIFFUSR PR #1 0-2000 X

20 0_ NID-DIFFUSR PR #1 0-2000 X

21 XOVR DISCH STATIC 0-2000 X X

2_ 8AL PSTN SHP DRM PR 0-500 X

2S INP OISCH TOTAL PR 0-2000 X

26 TRANSITION TOTAL PR 0-2000 X

27 XOVR EXIT TOTAL PR #1 0-2000 X X

28 XOVR EXIT TOTAL PR #2 0-2000 X

29 XOVR EXIT TOTAL PR #3 0-2000 X

* _0 PUNP DELTA-PR 0-3000 X X X

31 _ATER INLET TENP F 0-100 X

3_ LUBE OIL OUT TENP F 0-200 X X

_5 THRUST DISK FLOW 0-200 X x

_6 WATER FLOU GPN 0-1284 X X X

_7 LUBE OIL FLOUNATE GPN 0-4 X X

_8 SHAFT SPEED - RPN 0-10,000 X X x

39 TONOUE - IN-LBS 0-20000 X

40 RADIAL 0 ACCEL 0-10 GRNS 5 X

41 RADIAL 90 ACCEL 0-10 GRHS 5 X

_2 AXIAL ACCEL 0-10 GRNS 5 X

................................... • .............----------------'-''''''''-'''''''''''''''' .............

* USE XOVR DISCH TOTAL PR #1 TO INLET STATIC #2 PR FOR DELTA-P

RI/RD89.111
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Figure 22 - Crossover Tester Instrumentation Locations

I Transistion
Total Pressure

1 Total Impel
Disch. Pressure

_let Conditions

Pressure, Temp,
Flowrate (Air)

2 Inducer Disch.
Static.Pressures

2 Impeller Fro
Shroud _tatic
Pressures

3 Total Crossover Discharge Pressures

Mid-Passage and Off-center Points

--l Static Crossover Discharge Pressures

Flowrate

ng Lube Oil
Pressure, Temp,
and Flowrate

Speed,
Torque, Power
Acceleration

Lnce Piston
Drain Pressure

Flowrate

2 Diffuser Exit
Static Pressures

Mid-diffuser
Static Pressures

l Constant Area Duct
.Static Pressures

2 Impeller Rear
Shroud Static
Pressures

2 Impeller Discharge
Static Pressures

Constant Area Duct
Static P_essures

1 Transition Section

Static Pressures
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Table 7 - Air Test Instrumentation List

DATA RECORDfNGAND DISPLAY

PARAMETER PARAMETERNAME RANGE I REDLINE I

NUMBER PS|G I HIH / MAX I DIGITAL I STRP CHRT I CRT I HF DIGITAL

slii_s_Z_s1_Blmi1H_imHsslB_1_imm_zZ_j_ilsl_w_l_wl_lS_IB8j_ls8sii_zilgRl_ii_s2_=z_zl_mz_=_==_=

1 INLET STATIC PRESS #1 0-1

2 INLET STATIC PRESS #2 0-1

3 INDUCER DISCH PRESS #1 0-5

4 IHOUCER DISCH PRESS #2 0-5

S IMP FRNT SHRD PR #1 0-5

6 REAR SHRD PR #1 O-S

8 IHP DISCH PR 0 0-5

9 UPC CONST SEC PR #2 0-5

10 UPC CONST SEC PR #3 0-5

11 TRANSITION PR #1 O-S

12 DUN DIFF DISCN PR #2 0-5

13 DUN CONST SEC PR #2 O-S

14 DUN NID-DIFF PR #I 0-5

15 XOVR DISCH. #1 0-5

17 ;HLT ONF U/S PR 0-1

18 INLT ORF O/S PR 0-1

19 IHP DISCH TOTAL PR 0-5

20 TRANSITION TOTAL PR 0-5

21 _ EXIT TOTAL PR#1 0-5

22 XOVR EXIT TOTAL PR#2- 0-5

23 XOVR EXIT TOTAL PR#3 O-S

24 PUMP DELTA-PR 0-5

18 INLT ORF DELTA-PR 0-1

2S

26

30

31

AIR INLET TENP F 0-100

IMLT ORF U/S TENP 0-100

LUSE OIL OUT TENPF 0-200

LUSE OIL FLOWRATEGPN 0-10

32 SHAFT SPEED - RPN 0-1O,OOO

33 TORQUE - tH-LBS 0-5000

34 RADIAL 0 ACCEL 0-10 GRNS

35 RADIAL 90 ACCEL 0-10 GRNS

36 AXtAL ACCEL 0-10 GRNS

X

X

x
X

X

X

X

X

X

X

X

x

X

X

X

X

X

X

X

x

X

X

X

X

X

- / 150 X

1/- X

X

X

5

5

5

x

X x

.......... ..........., .... :.:_*,:;o.w,_..*..-.--oo°-- ........... ..°....... .... . .............................

* USE XOVR DISCH TOTAL PR #1 TO INLET STATIC PR #2 FOR PLff4PDELTA-P
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shroud to the rear shroud. Had the diffuser-crossover system shown poor performance,

this would permit valuable diagnostic data to be obtained relative to the uniformity of the

fluid entering the diffuser. For example, such measurements could potentially

differentiate between an impeller stall problem and a diffuser stall problem. A second

laser window was designed for the transition section of the diffuser between the upcomer

and downcomer diffusers. This too could be valuable for diagnostics to differentiate

between stall in the various parts of the diffusing system.

Test Procedures

The first test scheduled for the high velocity ratio diffusing crossover tester was a

system check out at 6322 rpm and 100% of design flow (582 gpm). This test, in

water, was designed to vedfy the soundness of the tester assembly, to verify the

instrumentation systems, and to determine the pump pressure distributions and axial

loads. One major goal of this test was to establish the hydrodynamically produced axial

loads, compare them to the current prediction, and modify the thrust disk back pressure

to accommodate these loads. A secondary goal was to rotate the total pressure Kiel probes

within the flow passages, to align the sensor with the fluid velocity vector. (Kiel probes

will measure the total pressure accurately within +40 degrees of the mean streamline

for velocities ranging from 4 ft/sec to Ma 1 in air)

Following the check out test, the performance tests were to evaluate the diffusing

crossover tester by mapping the delivered head as a function of flow. Tests were to be

run from 70% to 120% of design flow in 10% increments, while maintaining a constant

thrust disk back pressure to ensure the net axial thrust direction would always be

towards the inlet. To establish the H-Q map, the tester is brought to the proper inlet

conditions and ramped to speed, as stated in the program test plan. By adjusting the

pump discharge throttle valve, the tester flowrate was changed to the various set points

descdbod by the test plan, and the resulting pump pressure distribution recorded. At

each H-Q set point, the data system was allowed to take twenty (20) scans and average

the results before continuing to the next point. This method reduced the opportunity for

erroneous data.

Once the H-Q map had been determined, the stall region of the crossover was explored.

Starting at a nominal flow condition, as determined by the previous test, the flow would

be decreased in 2% to 5% flow increments until diffuser stall was clearly defined.

Again, the data was recorded at the steady state set points. The flow was then increased in

similar Increments until the diffuser performance returned to the nominal H-Q map.

RI/RD89-111
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Determining the diffuser stall point, in the decreasing flow direction, and the diffuser

reattachment point, in the increasing flow direction, is important for the engine system

operating conditions.

The final test sedes in water were the suction performance tests used to determine the

Inlet head at which pump discharge head breaks down. These tests were to be run at the

60% to 120%Qd conditions, in 10% flow Increments, in the order described by the test

matdx. The suction performance tests were initiated when the desired flow conditions

were met. At this point, the Inlet pressure was slowly reduced until a minimum 10%

breakdown in discharge pressure was observed. Immediately thereafter, the inlet to the

tester would be pressurized to the initial conditions. The thrust disk drain valve, during

these tests, was to be maintained in a constant position. Data were recorded continuously

dudng the cavitation tests.

The H-Q test in air was designed to verify the tester assembly function, set the total

pressure Kiel probe angular positions, verify all instrumentation was operational, and

obtain an H-Q curve for the pump from 70% to 120% of design flow, in 10%

increments. The H-Q tests in air were conducted similarly to the H-Q tests in water.

Test Facility Description

The test program for the high velocity ratio diffusing crossover was conducted at the

Pump Test Facillty in Rocketdyne's Canoga Main Building. Both water and air tests were

conducted at =this facility on the north powerhead. The tester was driven by a 4000 hp

reversible, synchronous electric motor. The 1200 rpm output of the motor was

increased through a oil lubricated gearbox to 6322 rpm.. The water and air tests were

remotely conducted from the control center, shown in Figure 23.

The water and air tests were conducted at the 6322 rpm speed to stay well below the

first undamped critical speed for this rotating assembly which lies between 8000 and

9400 rpm for the predicted beadng stiffnesses, as shown in the rotordynamic analysis.

The air tests were originally going to be run at 14,000 rpm in a separate air test rig,

but it was more economical to run the tests on the same rig as the water test. Also, at the

lower speed in air the Reynolds number is even further reduced from that in water

yielding a stronger contrast to characterize Reynolds number effects.

b

The water test facility and hardware interface schematic for the high velocity ratio

diffusing crossover was configured as shown in Figure 24. The water flowed from the

RI/RD89.111
.41 -



.... CR-194447

I

RI/RD89-111
-42-

.|

m
m

v

[L

E



Figure 24 - Water Test Facility Schematic
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8000 gallon tank through the tester and returned to the tank in a reclrculation mode.

The tank pressurizing and vacuum systems were capable of maintaining a constant

pressure at the pump Inlet during the head versus flow maps and could also ramp the

inlet pressure to less than 5 psla during the suction performance runs.

A hydraulically operated pump discharge valve, using flowrate feedback, was installed

downstream of the tester. This valve was used to vary the water flowrate during the H-Q

tests and maintain a constant flowrate during the suction performance test series. This

valve utilized the fiowmeter downstream of the tester to react to the requested changes in

the flow conditions. Since the flowmeter was located downstream of the pump, a

flowmeter was added to the thrust disk drain system so the actual pumped flow could be

measured. Later a flowmeter was placed in the inlet line reduce measurement error

created by adding the output of two separate flowmeters (see Figure 24).

A 40 micron (minimum) mesh filter was installed in the inlet duct to protect the

hardware from any debds in the facility lines. A 100 micron filter was installed

downstream of the hardware to collect any debris which emanated from the tester. The

tester beadngs were lubricated by a pump-fed 2 gpm oil jet supply and drain system,

also provided by the facility. A photograph of the lubrication system and hardware

interface is shown In Figure 25.

The air tests were conducted at the same pump position as the water tests. The fluid

supply system, however, was significantly different. A six inch diameter pipe, ten feet

long, with an eight-inch to six-inch pipe reducer at the entrance was used as the inlet

duct to channel the atmospheric air into the inducer. Within the inlet duct, a 2.000 inch

diameter orifice was used, in coordination with the upstream pressure and temperature

and odfice AP, to calculate mass flow. There were no appreciable axial loads predicted

for these tests, so the thrust disk back pressure system was plugged. Like the water

test, pump flow was controlled using throttling valve in the pump discharge line. A

schematic of the air test facility is shown in Figure 26.

There are two digital data acquisition systems that were used to record and reduce test

data at the Pump Test Facility. The system consists of two digital computers forming a

multi-user display and data processing system. The test control and data acquisition

system for the water test facility consists of an analog-to-digital conversion subsystem

tied into the Data General MV4000 computer as seen in Figure 27. The analog subsystem

can acquire 128 analog signals, such as pressure, delta pressure, temperature, torque,
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Figure 2_6 - Air Test Facility schematic
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speed, acceleration, flow, and displacement transducer outputs. All analog signals are

filtered and sampled within 80 microseconds (1st sample to the 128th sample). While

performing test control, the computer simultaneously accepts the digitized data from the

analog subsystem and passes the data every 0.1 second to the hard disk s_orage for post

test processing. After all data channels are acquired, the data is converted to specified

engineering units and sent to the various display monitors. At the conclusion of the test,

the data is transmitted to an Apollo computer format via BLAST software. The data is

then further reduced and analyzed by the Rotating Machinery Analysis groups.

For the air test facility, the Pressure System Incorporated (PSI) system was used. The

four major components of the PSI system are the Data Acquisition and Control Unit

(DACU), Pressure Calibration Unit (PCU), pressure sensor modules, and the system

controller. The DACU provides the control and data acquisition functions for the

pressure sensor modules. An eight bit microprocessor executing firmware programs

controls the DACU. The PCU consists of pneumatic valves and high accuracy quartz

pressure transducers. The pressure transducers ranged from 1 psig to 15 psig, with

accuracies to 0.5%. Under DACU control, the PCU switches the calibration value within

the sensor to calibrate position and then applies a three point pressure calibration to all

transducers. The calibration data is then reduced by the DACU. The main purpose of the

system controller, an IBM PS/2 Model 80 computer, is to program the DACU and direct

data flow within the acquisition system. Additional functions of the computer are data

reduction, data display, and permanent data storage. A photograph of the Air test data

controller and display are shown in Figure 28. When the test condition is met, the PSI

system averages twenty scans of data and stores the data in specified engineering units on

a 3.5 inch floppy diskette. The test information is then transferred from the data file

into a Lotus 1-2-3 spreadsheet where the data is further reduced.

TEST DESCRIPTION

Test Summary

Tests of the high velocity ratio diffusing crossover were conducted between September

1988 and October 1988. During that period, tests were conducted in air and water for

the purpose of obtaining performance data at two Reynolds Numbers and determining the

stall and cavitation characteristics of the crossover tester. Since the design of the

crossover tester and the MK49-F are geometrically similar, this data can be easily

scaled for comparison.
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Table 8 presents a summary of the nine tests actually performed. Test 1, in air,

provided a successful check out of the tester mechanical operation and facility systems.

Figure 29 shows the crossover tester installed in the air test+configuration at the Pump

Test Facility. Test 2 was repeated the set points of Test 1 while rotating the Kiel probes

to find the maximum total pressure. No effects were observed. Typical facility start up

and mechanical problems occurred in tests 3, 5, 6, and 7 primarily related to the

balance pressure drum operation which had not been used before in this facility and the

tank vacuum system operation required for the suction performance test. The only

instrumentation lost during the tests was the Kiel probe at the impeller discharge which

failed early in Test 4, however, some good H-Q data were still achieved. This Kiel probe

is located in a region of large dynamic variations due to the normal blade-to-blade

flowfleld In the rotating Impeller and is likely to have experienced a high-cycle fatigue

failure.

Table 8 - High Velocity Ratio Diffusing Crossover Test Summary

Test
Test Number

1

2

3 T88A092

4 T88A093

5 T88A094

6 T88A095

7 T88A096

8 T88A097

9 T88A098

Test
Fluid

Air

Air

Water

Water

Water

Water

Water

Water

Water

Test

Objectives

Check Out & HQ

HQ with Kiel Probe

Check Out @ 100 Qd

Check Out @ 100% Qd

HQ and Stall Map

Detailed Mapping

Suction Performance

HQ & Stall Mapping

Suction Performance

Comments

Objectives Achieved

Objectives Achieved

Test Cut - Redline

Objectives Achieved

Facility Issue

Facility Issue

Umited Data Achieved

Objectives Achieved

Redline Cut. Data
Achieved - Tester Failed

Test 7 was very successful and several H-Q points were achieved, diffuser stall was

mapped, and some suction performance tests completed. In Test 8, the remaining suction

performance data points were completed. Test 8, however, was terminated prematurely

by a torque redline cutoff. At the time of cutoff, the cavitation test at 80% design flow

had just been completed and the inlet line was being re-pressurized. During the

automatic shutdown sequence, the one-inch diameter quill shaft failed. Tester

disassembly revealed that the pump end bearing had failed and the impeller front shroud

had rubbed severely on the inlet housing. Post test analysis of the pressure parameters
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indicated that the axial thrust of the pump had dramatically changed due to shifting

pressures caused by the deep cavitation in the pump. Figure 30 shows the axial loads

calculated for the test where the failure occurred. With the pressures changing so

rapidly, the accuracy of calculating this load is in question because it is obtained by

vector addition of large forces which yield a relatively small residual. However, the

trend is certainly correct. As can be seen from the Figure 30, the thrust suddenly

changed direction at the end of the test by a magnitude of over 6,000 lb. resulting in an

unloaded pump end ball bearing. Subsequent pressurization of the inlet and recovery

from cavitation would then force the bearing back into a highly loaded condition which

caused the bearing failure.

Hardware Disassembly

At the conclusion of the final test, the high velocity ratio diffusing crossover tester was

disassembled and the condition of the major components documented. Two major

observations were noted. First, there was significant rubbing on all the close radial

clearance locations, and second, the shaft had translated axially toward the inlet

sufficiently enough to rub the impeller.

When the axial load reversed during the 90% and 80% Qd cavitation tests, the pump end

bearing was unloaded, providing no radial support to the shaft. The rotor proceeded to

whirl with amplitudes sufficient enough to cause the rotor to rub in the soft seal areas.

Most of the damage incurred was at the inducer/tunnel, impeller hub/interstage seal,

and thrust disk/seal interfaces.

The inducer tunnel and interstage seals were made with Hexcel 3125 polyurethane as

described earlier. The interstage seal was badly damaged, including large cracks and

significant material loss. However, there was no damage found on the inside diameter of

the crossover housing. The rubbing velocity at the interstage seal was approximately

110 feet per second.

The Inducer tip seal was moderately damaged. The inducer tip seal showed scratches

from rubbing of the aluminum inducer blades, as well as pitting caused by the deep

cavitation. Some minor damage to the inducer blade tips were also noted, but were

considered superficial and easily repairable. The rubbing velocity at the Inducer tip

seal was approximately 154 feet per second.
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Further Investigation into the survivability of Hexcel 3125 as a soft seal material is

required to fully evaluate the findings of the post test disassembly. The condition of

these seals were documented for the data base being compiled under the Soft Wear Ring

Seal Technology Program, Task B.5.

The thrust disk, made from A-286, also rubbed the KeI-F thrust disk seal during the

bearing unloading. The wear track in the KeI-F was not uncommon for this seal/rotor

combination. Some heat generation was noted on the disk tip. The rubbing velocity in

this location was approximately 235 feet per second.

The soft seal materials, though heavily damaged, were very successful. One of the main

goals of this type of seal is to tolerate rubbing without damaging the rotor or stationary

housings. In each case, the seals were worn, but did not cause severe damage to the

rotating part or the soft seal retainer system. This was important because if significant

rubbing were observed in an actual turbopump, only the soft seal material would have to

be replaced and not the expensive rotor or seal retainer parts. This was evident in the

interstage seal area. If a metallic seal would have been used in this application (and not

uncommon) the impeller and the crossover as well as the soft seal would have to be

replaced. During the crossover tests, however, neither the impeller hub nor crossover

were doJ'naged.

The axial rubbing damage caused by the axial translation of the shaft was much more

severe than the radial rubbing damage. Some of the damaged parts included the impeller,

front shroud carbon face seal, bearing sleeve, and labyrinth seal retainer.

The axial travel that was witnessed during the failure was over .025 inch towards the

inlet. This was caused when the axial load returned towards the inlet after unloading the

bearing during the 80% Qd test. When the thrust reversed the bearing seized, and the

power of the motor kept turning the tester shaft. The tester shaft rotated inside the

inner dng of the failed bearing heating the shaft sleeve and bearing area. With the

3,000 lb. load towards the inlet the high frictional heating in this area, the sleeve

between the bearings started to deform allowing the shaft to travel until the impeller

shroud started to rub on the pump and housing. At some point, the torque from the

rubbing of the shaft and impeller was enough to shear the quill shaft. Excessive damage

was incurred to the front shroud of the impeller, tester shaft and bearing separator

sleeve. A list documenting the current damage status of the tester parts and the action

required to fix the tester are shown in Table 9.
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TEST DATA ANALYSIS

Data from the two air tests and four of the seven water tests were compiled to determine

the performance of the crossover tester. The tester performance was analyzed to review

the crossover as well as the pumping element performance (inducer and impeller). In

this section, the crossover test results of head and efficiency, axial thrust, critical

NPSH, and crossover pressure recovery will be discussed and compared with the

analytical models used to design this tester and the MK49-F LH2 turbopump. Data from

the MK49-F turbopump tests conducted in 1986 will also be compared with these

results. The raw data for the Air Tests 1 and 2 can be found in Appendix A and the water

test data from tests T88a094, T88a096, and T88a097 can be seen in Appendix B.

Stage Head and Efficiency versus Flow Results

The overall stage head was determined using the crossover exit total pressure

measurements and the calculated inlet total pressure where the latter was based on the

measured static pressure and the calculated velocity head from the measured fiowrate.

At the crossover exit, three total pressures were measured at different radii

representing the V4, I/2, and 3/4 blade height positions. These three total pressures

were in excellent agreement as can be seen in Figure 31 (notice the suppressed zero to

expand the scale). This was the expected result and shows that the crossover exit flow

was relatively uniform hub-to-tip as designed. If there had been a significant

separation at the hub or tip, a variation in total pressure would have been seen.

Data from two water tests (T88A094 and 096) were combined in Figure 32 to show the

stage head-flow relationship for the water test in comparison with the predicted head.

The predicted head was calculated using Rocketdyne's Loss Isolation Program for

centrifugal pumps with the actual dimensions and fluid properties for the water test

configuration. This program accounts for the Reynolds number change for the test set up

versus that for hydrogen testing of the MK49-F, The comparison between measured and

predicted values was good, with the measured values of head being approximately 4

percent low at the design flow (Qd). Tests of the 3-stage MK49-F hydrogen pump had

also shown the head low by about 8.0 percent. With a known overboard seal leakage

problem partially contributing to the low head, a direct comparison of the tester and the

MK49-F turbopump could not be made. Based on the water data, however, it appears

that the stage performance of the hydrodynamic design was slightly lower than predicted.

Figure 32 also shows the stall characteristic. The analysis had predicted the stall to

occur at approximately 80 percent of design flow with a rather moderate decrease in

head. The Loss Isolation program only predicts stall due to leading edge flow angle
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mismatch. The water test data shows that the stall initiates at approximately 76% Qd

while the flow was decreased. While increasing the flow, the stalled condition persisted

until approximately 100% Qd. This is known as the stall hysteresis effect.

The stall hysteresis phenomena could have important implications in the engine start

sequence. For example, if the pump operated at a low Q/N (flow-speed ratio) during the

start transient and the diffuser stalled, then the pump may remain in the stalled

condition if the pump operated at a Q/N lower than 100%. This scenario is being

reviewed for the MK49-F turbopump performance issues on the Integrated Component

Evaluator (ICE) completed under Task F.4 of this contract.

The total head loss due to the stall was not severe and was only approximately 9% lower

than the predicted head at 70% Qd in the "unstalled" condition. This low head loss is

characteristic of leading edge type stall in a centrifugal pump.

To determine the pump stage efficiency, the power absorbed by the rotating axial thrust

balance disk was subtracted from the measured power (torque and speed) to arrive at the

pump absorbed pump power. The thrust balance disk power was calculated using the

Daily and Nece friction coefficients (Ref. 1). Figure 33 shows the resulting pump

efficiency for the water test as a function of flow and compares it with predicted values.

Near design flow, the efficiency was approximately 3 percentage points lower than

predicted. The lower calculated efficiency was due in part to the accuracy of the

calculated and measured power terms. The general shape of the curve again agrees well

with prediction. As was the case with the head characteristic, the measured stall

initiated later than the predicted stall.

The effect of Reynolds No. on head was larger than expected. Figure 34 shows the head-

flow relationship for the stage from the air test, again comparing the measured to

predicted values. The measured head near 100% Qd was about 18 percent lower than

predicted even though the predicted curve in air was 18 percent less than the prediction

in water. Also, note that the air data does not show any stall characteristic in the curve.

Data to be presented below will actually show that the diffuser was stalled over the full

range of flow for the air test, so that the head characteristic in the data presented was

the stalled head.

The stage efficiency could not be determined from the air test because of the low power

absorption compared to the system tare torque. Table 10 presents the predicted and
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measured head and efficiency of the crossover tester in water and air along with those

data available from the MK49-F turbopump testing.

Internal Pressure Distributions

With the numerous internal pressures used in the test, the performance of individual

components of the pump was estimated.

For the air test, the total pressure at the impeller discharge was measured using a single

Kiel probe. Using this, the_total head across the inducer'impeller combination was

determined. The measured head was actually slightly higher than the predicted. The

results are shown in Figure 35. This was consistent with the observations of stage head

and efficiency reported above. The water data had shown the head closer percentage-wise

to the prediction than the efficiency. This could be obtained if the impeller head were

higher than predicted, and the losses in the diffusion system were higher than predicted.

The two effects tend to cancel each other in the stage head but the higher losses show a

direct effect on the efficiency.

Another interesting feature in Figure 35 was the difference between the two air tests.

The first air test was started at a lower Q/N which apparently put the Impeller into

stall, and due to hysteresis the impeller did not come out of stall until approximately Qd

was achieved. Once out of stall, the flow could be decreased to 70% Qd without initiating

stall. On the second air test, the pump was started at a higher flow but still began in an

apparent stalled condition but, even more surprising, never got out of the "stalled"

condition. This behavior has not been explained. The stage head characteristic in air did

not show the same trends from test one to test two. In Figure 34, the two tests were

shown to give about the same head value, and in fact, the data for the second test was

higher than for the first test. With severe stall in the diffuser system, the stage

performance results are not necessarily expected to be consistent.

Figures 36 and 37 show the static-to-static pressure rise across the inducer-impeller

for the air and water, respectively. The air clara (Figure 36) shows the same general

features as the total head curve, but the difference between measured and predicted was

much higher for the static rise. This was possible if there was some diffusion in the

vaneless space due to the difference in radial position between the impeller diameter and

the sensing port diameter. For the water data, the prediction and measurement are

closer but the measured value was still higher. Note that for the water, the predicted
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static pressure was actually 14 percent higher than for air, but the measured values are

essentially the same.

Figure 38 shows the static-to-static pressure rise across the inducer only for both air

and water tests. Again, the second air test gave lower results. This could be indicative of

inducer "stall" in the second test which would have aggravated the impeller stall.

However, it was still not clear why the inducer would not come out of stall at the higher

flows. The water data agreed with the data from the first air test. The air test data did

not show a definitive stall, although there was some indication of hysteresis between

65% and 75% Qd. The predicted inducer discharge static pressure was close to the

measured value for the air test at the design flow using the Loss Isolation Program. The

predicted inducer discharge static pressure, for the water tests, was slightly higher.

To show the diffuser performance, plots of static-to-static head rise from pump inlet

through crossover exit were prepared showing the intermediate stations through the

diffuser-crossover system. The water test data pressure distribution at various

flowrates are shown in Figure 39. The measurement stations (1 through 9) are

delineated on the cross section of the pump in Figure 40. Note the significant increase in

static pressure from station 3 to 4. This figure clearly shows the majority of the

diffusion occurring in the upcomer diffuser. In the transition and the downcomer

diffuser, little diffusion can be achieved because the boundary layers are already large

before entering these sections. Figure.39 also shows the stall occurring in the upcomer

diffuser at the 70% Qd flow. Note that the pressure at station 3 (impeller exit) was

still high at this flow but the pressure at station 4 decreases.

The two air tests gave similar results so only those of the second air test were shown in

Figure 41. The majority of the diffusion should be occurring in the upcomer diffuser,

station 3 to station 4, as was seen in the water test data. The static pressure, however,

for most flows significantly decreases from stations 3 to 4. Thus, the inlet to the

upcomer diffuser was the point of initiation of the stall. The diffusion system never

recovers from this stall. The stall was caused by increased boundary layer blockage due

to a low Reynolds number. This effect resulted in an impeller discharge flow which

entered the diffuser at a velocity and angle which would produce flow separation at the

leading edge.
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Figure 40

1. INDUCER INLET
2. INUCER DISCHARGE
3. IMPELLER DISCHARGE

4. UPCOMER CONSTANT
5. TRANSITION
6. DOWNCOMER CONSTANT

7.DOWNCON[ER

8. DOWNCOMER DISCHARGE
9. CROSSOVER EXIT
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Pump Suction Performance

Suction performance data were obtained from 80% to 124% Qd at approximately 10%

Qd increments. It was during the 80% Qd flow test when the tester bearing failure

occurred. By this point in the test program all flow conditions had been tested. Some

data points, including the design flow point, would have been repeated because less than

3% head loss was seen. However, enough data existed to project reasonable estimates of

the suction performance for all flows.

The test data were typically reduced by plotting stage head as a function of NPSH (Net

Positive Suction Head) for each constant flow condition. Flow was held constant during

these test via the pump discharge throttle valve. Typical results were shown in Figure

42 through 50, beginning at 80% and increasing to 124% Qd.

At the lower flows, the head was seen to hold relatively constant and drop sharply once

cavitation effects were seen. Figure 43, at 87% Qd, shows a very interesting

characteristic in that the head drops noticeably into stall as the NPSH was decreased. It

can be said that the ensuing cavitation phenomena was a sufficient disturbance to drop

the head to the lower level of the stall hysteresis characteristic.

As mentioned, in Figure 44 and 45, the tests were terminated before significant head

loss occurred. The resulting suction specific speed values could not be accurately

determined. Unfortunately, the failure occurred before these key points could be

repeated.

As the flow was increased, the head was seen to drop at a higher NPSH, as expected.

However, head loss was less severe before eventually dropping into super-cavitation, as

seen Figures 46 through 50, which was indicative of the inception of impeller stall.

This phenomena has been seen in other centrifugal pumps like Rocketdyne's MK29-F

(used on the J2S Engine). Inducer performance was seen to be lower than expected and

may have also contributed to this situation.

Using the Head versus NPSH data, suction specific speed curves were generated to

compare with the design predicted value. These curves are given in Figure 51 for 3, 5,

and 10 percent head fall off. Suction specific speed was defined as:

Suction Specific Speed = N=== N'lrQ
(NPSH) -Ts (1)
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where the parameters were speed (N) in rpm, flow (Q) in gpm, and NPSH in feet. Also

shown in the figure was the predicted ideal capability at 3% head fall off based on the

design flow coefficient and inlet hub/tip diameter ratio of the inducer. The ideal suction

specific speed in water without thermodynarn]c suppression head (TSH) benefit was

nearly 29,000. The suction specific speed calculated from the water data was only about

18,000. The low Nss could have been caused by several factors: (1) leading edge of

inducer not fabricated to print, particularly with regard to thickness, (2) tip clearance

of the inducer and leading edge thickness too large, (3) large hub-to-tip diameter ratio

of the Inducer, or (4) design deficiency. The latter does not appear to be the problem

based on review of the hydrodynamic design. With the size of the MK49-F inducer being

so small, the parameters typically controlled for good suction performance could not be

scaled down. Consequently, the inducer tip clearance and leading edge radii, used in this

tester, when scaled up from the small MK49-F, were larger than the ideal dimensions

used on a turbopump of similar size. By scaling up these dimensions, suction

performance would be reduced from the ideal case, hence the lower performance found

during the tests.

It should be noted that the results of Figure 51 were for a single stage and with no TSH

benefit. For a 3-stage pump in hydrogen the results would be much better. For

example, 10 percent head loss on the first stage would represent only about 3 percent

over all for the 3-stage design. The 10% head fall off curve was not defined in Figure

51 at design flow but the suction specific speed (Nss) could easily reach 25,000. With

added TSH benefits, the suction specific speed capability in hydrogen could be much

higher than 30,000.

At the time the MK49-F was designed, the required suction specific speed was only

10,000 at design flow. This value was exceededeven in water for a single stage. Thus,

the operating requirements would be met even though the performance was down from

the predicted potential at the design flow coefficient.

Using the inducer and impeller discharge static pressures, the relative performance of

the Inducer and impeller can be distinguished over the flow and NPSH range testedl

Figure 52 shows the inducer static pressure head rise above inlet total at 87% Qd, and

Figure 53 shows the corresponding static pressure head differential across the impeller.

Obviously, at this flow the inducer was determining the suction performance of the stage

while the impeller continues to generate the static pressure head until the inducer

performance drops. In Figure 53, note the very interesting result of the stall that was
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also seen to occur at an NPSHof approximately140 ft. in Figure43. Although the

impeller experienceda significantdischargepressureoscillationduring pump stall, it
did not lose head, showing that the pump stall occurredin the diffuser. The static

pressureheadwas actuallyvaryingby 250 feet, peak-peak. With a stagehead rise of
only 1400feet this was a peak-peakvariationof over 15 percentof the stage head.

Operationundersucha largedynamicoscillationwouldnotbe recommended.

In contrast to Figure 52 and 53, Figure 54 and 55 present the same two parameters at

109% Qd. At this flow the impeller can be seen to slowly lose static pressure head as

NPSH was decreased even though the inducer static head remains the same. As the

inducer head decays the effect was also seen in the impeller, but the impeller began

losing head earlier. Even at this flow however, the super-cavitation point was

determined by the inducer, not the impeller. This was, of course, typical. At higher

flows, the impeller suction performance was most critical while at design flow and

below, the inducer determined the suction performance.

Shroud Vortex Strength

Static pressure measurements were made on the front and rear shroud of the impeller to

permit evaluation of the vortex strength in these regions. The pressure distribution on

these shrouds, which are strongly affected by these vortices, determine both the axial

thrust and the shroud leakage rates. Data from the water tests was used to establish the

front and rear shroud pressure distributions. Figure 56 presents an illustration of the

impeller shroud pressure distributions and the direction of leakage flow.

The front shroud flow enters from the impeller outer diameter and down the shroud

cavity to the impeller labyrinth seal. This leakage combine with the inducer discharge

flow before re-entering the impeller eye. Because the front shroud flow enters at the

impeller tip, the fluid already has a strong tangential velocity. According to the Loss

Isolation program results, the fluid tangential velocity to impeller tip velocity ratio,

defined as Cu/Ut, at the design flow is 0.63. This velocity ratio varies from 0.67 to

0.61 at the 80% to 120% design flow, respectively. Since the impeller discharge static

pressure was measured 0.213 inch radially outboard from the impeller outside

diameter, the static pressure at the impeller tip was calculated, using the velocity ratio

and assuming no total pressure loss per the following;

I rtip 1)= Pro,=
2g (2)
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Figure 56 - Crossover Tester Impeller Shroud Geometry

Front Shroud Flow
/

v P
-]: - |

i

/
/

LRear Shroud Hub Radius - 1.9965 inch

Rear Shroud Press Tap Radius - 4.700 inch

Front Shroud Hub Radius - 3.411 inch

Front Shroud Press Tap Radius - 4.710 inch

f •

Impeller Tip Radius = 5.562 inch

Impeller Discharge Press Tap Radius = 5.775 inch
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The effective ratio of fluid to wheel

determined from the relationship,

Ap =

velocity, K, in the

pK2N2(d22-d_)

144(2g)(229.2) 2

CR-194447

front shroud region was

(3)

where p was the specific weight in pounds per cubic feet, g was acceleration due to

gravity (ft/sec2), N was the shaft speed in rpm, d2 and dl (in inches) are the diameters

at the pressures measurements (d2 being at the impeller tip) and Ap was the

differential pressure in psi from d2 to dl. The constants in the denominator were used

for engineering unit conversion. A predicted front shroud velocity ratio, Kfs, of 0.7 was

selected based on the high tangential velocity entering the cavity and from turbopump

data with similar geometries, such as the SSME HPFTP. As seen in Table 11, the

measured values of Kfs, ranged from 0.72 to 0.68 from 80% to 120%Qd, respectively,

and were in excellent agreement with this prediction. Because of the higher than

predicted impeller discharge pressure at 80% and 100%Qd, a modest increase in axial

thrust, 824 and 808 pounds, respectively, was calculated.

For the impeller rear shroud, the flow field was very different. In this case, the flow

originates from the crossover exit with very low tangential velocity, flows through the

interstage seal, and up the rear face of the impeller. Analysis had predicted the K value

on this face to be as low as 0.23 due to the low entering velocity. The test data showed,

however showed that the rear shroud velocity ratio, Krs, to be between 0.36 to 0.33.

The higher value may have been due to a higher than expected angular velocity exiting

the interstage seal.

If the flow were low, a value close to 0.5 would be expected (this being the average value

for a rotating flat disk in a stationary housing with no through-flow). A higher Krs

would tend to reduce the axial force on this face, as seen in the 100% and 120%Qd

calculations, where a reduction of 694 and 1626 Ibf, respectively, was seen. At the low

flow condition, 80%Qd, the higher than predicted impeller discharge pressure

overwhelmed the influence of Krs on axial thrust, and therefore, a slightly higher value

(340 Ibf) was calculated. The K factor information generated will be used to recalculate

the axial loads of the MK49-F turbopump.
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Diffuser Crossover System Design Verification

The diffuser-crossover system plays an important part in the operation of a high

efficiency multistage pump. The diffuser and crossover (DC) system consists of a

vaneless space upstream of two straight mean line diffusers with a constant area turning

channel in between, Figure 57.

The vaneless space was necessary for the suppression of pressure and velocity

perturbations from the impeller blade wakes. These perturbations cause local

variations in the diffuser inlet flow angle resulting in dynamic loads on the leading edges

of the diffuser vanes. The gap size was restricted since increasing the gap size above the

minimum necessary will reduce efficiency and increase diameter and weight.

Design of the first diffuser of the DC system, the upcomer, requires one of the most

critical calculations in diffuser design: the calculation of the effective blockage at the

diffuser throat. This calculation requires estimation of the boundary layer growth up to

the throat in the following regions:

1)

2)

3)

Along the side walls in the vaneless space

Along the side walls in the diffuser inlet region represented by the
triangular section DEF (Figure 58)

Along the vane suction surface (line DE in Figure 58)

The boundary layer displacement thicknesses were simply added to arrive at a total area

blockage at the throat. The blockage formula can be stated as:

BLG4=28sw +
b4 h4 ( 4 )

and represented in Figure 58. Note that eq. (4) double counts the boundary layer

blockage in the corners, which tends to overestimate blockage, but this was assumed to

partially account for 3-D boundary layer interaction effects not represented in the

simple i-D displacement thickness calculations. Coincidentally, double counting the

boundary layer blockage in the corners may compensate for the actual metallic blockage

due to corner radii or fillets.
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NONDIFFUSING

TURNING CHANNEL

RADIAL

OUTFLOW
DIFFUSER CROSSOVER

DIFFUSER

IMPELL_

Figure 57 - Diffusing Crossover System

h4 - DIFFt._ER THROAT WIDTH

b4 - DIFFUSER HEIGHT AT EF

_ss " BLADE SUCTION SIDE DISPLACEMENT
THICKNESS AT THROAT EF

_tw " WALL DISPLACEMENT THICKNESS _,

i - INCIDENCE ANGLE

D

•" "" " STREAM_

i---h,--..4 ,,.
SECT,ONVIEWOFELF

NOR.ALTOSTREA.LINEA.C

Figure 58 Boundary Layer Build Up in Diffuser Inlet
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Determinationof the throat blockage has been correlated with the pressure recovery

from the diffuser inlet to the throat (Ref. 2, 3):

= ( 94- 93)

q3 q3 (s)

where P3 and P4 were the static pressures at diffuser inlet and throat and q3 was the

inlet dynamic pressure defined as:

2 (6)

where C3 was the diffuser inlet flow velocity. Figure 59 shows the correlation plotted at

various inlet blade angles, oz. As expected, the smaller the blade angle the larger the

blockage due to the increased length of the fluid path to the diffuser throat. Since these

curves were developed for a Reynolds number of lx105, a correction for significant

variation in the Reynolds number was derived:

CR = 10 Re -o.2 (Ref. 2) ( 7 )

The blockage was read from the curves in Figure 59 and multiplied by CR to determine

the effective throat blockage. This blockage was then used to determine the pressure

recovery of the diffuser channel from the 2-D diffuser performance Cp maps; an

example of which was given in Figure 60.

The diffuser pressure recovery can be defined in various ways. The pressure recovery

as defined by the diffuser maps desc_0ed above was:

Cp = 2(Pd-Pt)

(8)

where Pd - Pt was the static pressure difference between the diffuser discharge and the

diffuser throat and Ct was the velocity at the throat including any throat flow blockage

due to the boundary layers. Since the blockage was not known, a priory in this case, an

alternate form of the pressure recovery factor was defined by not including the blockage
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in the velocity term:

CR-194447

C.,p= 2(Pd-P=_

J p_ (9)

where Pd and P1 were the static pressure at the inlet and discharge to the diffuser and Ct

was the mean velocity in the diffuser throat calculated only from the flowrate and the

diffuser throat area. It was felt that this coefficient was the most representative to

compare the analysis calculations to the data results because it allowed direct

comparison between experimental and analytical results. The original design criteria

was for no diffusion between the inlet and the throat of the upcomer. The test results

were compared to this analysis and then the required throat blockage and leading edge

suction surface diffusion required to match the test data were calculated. Similarly for

the downcomer the pressure recovery was predicted analytically and then the throat

blockage was calculated from the measured pressure _ecovery.

Data,analysis for the upcomer Involved using the same techniques as those utilized

duringthe design anaiysis, but using the data results _to°caicuiate the amo_uh=t°bf inlet

blockage and the diffusion occurring in the inlet section of the diffuser. The analysis

required iteration of the inlet pressure recovery, &P/q3, to determine the blockage

from Figure 58 This blockage was then used to determine the predicted throat velocity

for calculation of the throat Reynolds number defined as:

Re = CtWt
(1o)

where Ct was the throat velocity including the predicted blockage, Wl was the throat

width, and _ was the kinematic viscosity. The blockage term as determined from Figure

58 was then corrected for Reynolds number using the correlation previously determined

in eq. (3). This value of blockage was then used to find the L/8*, where L was the

effective diffuser channel length from throat to discharge and 8" was an effective

blockage determined from the Reynolds number corrected blockage. This term was

necessary for the determination of the diffuser pressure recovery from_ Figure 60. The

obtained Cp can easily be transformed to a mean pressure recovery, Cp, by adjusting the

throat velocity in the denominator by the predicted blockage. The inlet pressure

recovery term was then converted to a common denominator by multiplying by the ratio

RI/RD89-111
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of the throat dynamic pressure,

J

q, - J-p_
2 (11)

tO the inlet dynamic pressure, q3. This ratio was determined by assuming a "lossless"

core flow in the diffuser inlet section. This is an often used assumption for 2-D diffuser

analysis and assumes that the boundary layers do not merge. The q3/qt ratio was:

"-_"1 (12)

n

The Cp calculated from the data can be compared to the analysis Cp,

- Ap q3

(I -BLG4) = (13)

The analysis was then completed by iterating on the inlet pressure recovery until the

data and analysis mean pressure recoveries were matched. From this analysis, it was

po_ssibleto_0btaina good-P_stimateofthp_actual thr0atbiock_gp. .__....... :

Data was available in three test mediums: hydrogen, water and air. One speed was

selected from the hydrogen turbopump tests (6_0K-rpm)-giving data at three Reynolds

numbers. As will be shown, the data predicted that the diffuser was stalled in air,

allowing the diffuser performance predictions to be verified at two Reynolds numbers

and the stall pred!ction to be checked for the third.

Hydrogen test data of the complete turbopump showed that the upcomer had a mean_

pressure recovery, _-'P, of 0.749 at 60,000 rpm. Design analysis predicted a Cp of

0.684 and a throat blockage of 8%. Analysis of the data indicated that diffusion had

occurred in the diffuser inlet. The analysis showed that the inlet AP/q3 was 0.07 and

the throat blockage 10.8% to match the test data Cp. This analysis of the design was

confirmed by comparing the inlet velocity of the analysis to that which was predicted by

Rocketdyne's Loss Isolation program for centrifugal impeller design. The velocities

were very close: 620.7 ft/sec from the data analysis and 619.7 ft/sec from the Loss

Isolation program. The amount of diffusion represented by the &P/q3 was only 3.6% of

the inlet velocity and probably represents the time average effect of the unsteady flow at

the upcomer inlet. Table 12 gives a summary of the analysis results.
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Table 12 - MK49-F Turbopump Crossover Data Analysis (LH2)

Design

Cp
Data Cpn

0.866

Da_ 0.749 0.866

Analysis

&P/q3

0.07

Note: C3 in feet per second.

m

BLG4 Re Cp Cp

0.08 2.6x10 s 0.58 0.684

0.108 2.85x106 0.52 0.748

C3 C3
Analysls Loss

Prgm

619.7

620.2 619.7

Water test data showed that the upcomer had a mean pressure recovery of 0.81.

Analysis showed that to achieve this amount of pressure recovery there was

approximately 6% diffusion in the diffuser inlet. This indicates that the inlet &P/q3

was 0.12 and the throat blockage was 17.8%. This analysis was substantiated by a

comparison of the inlet velocity calculated from the data analysis with that predicted by

the Loss Isolation program. The values agree within 5% as shown in Table 13. The

increased throat blockage was expected since the lower Reynolds number of the water

test, compared to the hydrogen tests, would tend to increase the boundary layer growth

on the diffuser walls.

Table 13 - Crossover Tester Data Analysis (Water)

m D

Cp Cpl
Data

0.81 0.866

AP/q3 BLG4 Re Cp Cp C3 C3 Loss
Analysls Prqm

0.12 0.178 4.32xi05 0.41 0.808 194.6 181.6
(fps) (fps)

The diffusion system turning channel was designed for minimum losses. Rocketdyne data

has shown that it was best to avoid diffusion in the turning channel, achieving all the

diffusion in the radial inflow or outflow sections of the passage. Design of the turning

channel for no diffusion and to minimize the losses does not simply mean designing for a

constant cross section duct. Losses arising from secondary flows developed in the

turning channel due to the centrifugal forces of the fluid flowing around the bend must be

minimized. An area distribution to achieve this was developed by the Southwest

Research Institute (Ref. 5). A correction factor was applied to the duct height as a
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function of radius to minimize the migration of boundary layer fluid from the outside to

the inside of the bend.

The effectiveness of the turn-around duct could not be determined directly due to the

complexity of the flow in the bend which would have required extensive flow

measurements. An estimate of the effectiveness was found from the data analysis of the

second diffuser inlet blockage as compared to the discharge blockage of the first diffuser.

Design analysis of the second diffuser, the downcomer, was much the same as the

upcomer although there was no inlet blade section. Again, accurate calculation of the

inlet blockage was essential to the design. A first approximation of the inlet blockage can

be made by assuming a loss-less flow from the upcomer discharge through the turning

channel. Thus, the inlet, or throat, blockage of the downcomer would be equivalent to the

discharge blockage of the upcomer. This analysis indicates that the inlet blockages for

hydrogen and water would be 55% and 61%, respectively. Using these blockages the

mean pressure recoveries were predicted to be 0.57 in hydrogen and 0.76 in water.

Data showed that the pressure recoveries were actually 0.867 in hydrogen and 0.586 in

water. The necessary throat blockages to match the data were found to be 65% for

hydrogen and 55% for water. The data analysis for the hydrogen shows that the blockage

only grew by a factor of 10% in the turnaround duct. The water data indicated that the

blockage decreased from that predicted by the "lossless" flow approximation which was

probably due to experimental and analytical inaccuracies. The analysis, however, does

show the criticality of predicting the throat blockage in calculating diffuser

performance, and also that the turnaround duct has achieved its purpose of minimizing

the increase in blockage from the upcomer discharge to the downcomer inlet. The results

were summarized in Table 14.

Table 14 - Crossover

Test Fluid

LH2 (Loss-Less Core Analysis)

LH2 Data Analysis

Water (Loss-Less Core Analysis)

Water Data Analysis

Analysis Data (Water and LH2)

Cp_

0.866

0.866

0.866

O.866

m

BLG4 Cp

0.55 0.115

0.65 0.106

0.61 0.10

0.55 0.12

ci,
Analysis

0.572

0.865

0.755

0.593
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The effectiveness of the overall diffusion system can be measured by ass_._umingthat the

system was one diffuser. Determination of the ideal pressure recovery, Cp_:

t -(AR)= ( 14 )

where AR was the area ratio of the diffuser as defined by the downcomer discharge area

to the unblocked upcomer throat area. The calculated overall Ca was 0.982, and for each

individual diffuser it was 0.866. The data analysis shows the ove.._rall.___to be .853 in

hydrogen and 0.887 in water. Calculation of the effectiveness (C'wCa), which was an

indication of the diffuser efficiency, was 0.887. This was of the order expected for a

diffuser with the calculated area ratio and length to throat width, IJW1. Table 15 gives

a summary of the mean pressure recoveries computed from the data and the analysis.

Figure 60 shows the first stage diffusion system operation at 60K and 87K rpm in

hydrogen and the current test at 6,322 rpm in water, plotted as a static pressure rise

normalized via the tip speed of the impeller versus the position in the diffuser. The

performance loss seen in the 87K hydrogen test was not due to the diffuser, but due to a

performance loss in the impeller probably caused by excessive overboard leakage.

Table 15 - Crossover Overall Performance (Water and LH2)

.Test Fluid

MK49-F Turbopump (LH2)

Crossover Tester (Water)

Cpl

0.982

0.982

Note:

Cp
Analysis

0.853

0.887

Cp
Data

0.854

0.888

Total Pressure
Loss (Ps'P3)

Data
(psla)

90.16

No total pressures measurements were taken during the MK49-F

Analysis
(psla)

101.24

Turbopump

tests.

A method of verifying the analysis was to compare the total pressure loss through the

system as determined by the analysis and the data. This information was recorded in the

water test and was found to be 90.2 psia as determined by the calculated impeller exit

total pressure and the measured crossover exit total pressure. The analysis predicted

that the total pressure loss would be 101.2 psia. The system performed better than

predicted by the analysis.
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Results from the air test (Figure 61) show a static pressure loss in the upcomer,

indicating a stall either at the leading edge or in the 2-D diffuser. Analysis showed that

the pressure recovery for the upcomer in air should have been 0.29, which was very

low, but does not represent a stalled condition. The pressure recovery was low due to the

boundary layer blockage of the upcomer throat, approximately 30% as extrapolated

from the hydrogen and water data analysis. This was much larger than in the water and

hydrogen tests because the Reynolds number of the air test was only of the order of

lx104, two orders of a magnitude less than the hydrogen test. This data and analysis

indicates that the stall occurred at the diffuser leading edge.

The leading edge stall model was based on modeling the flow Incidence angle and blade

geometry of the diffuser inlet vane suction surfaceasa2--D c-hannel diffuser (Ref. 2).

The diffuser blade row can be approximated as shown in Figure 62, where the transition

region ABCD can be treated as a 2-D diffuser. The 2-D diffuser St,_l model Was used to

predict a leading edge stall, Figure 63, using line a-a. Using the diffuser geometry and

the expected inlet flow angle as determined by the Loss Isolation program, stall was

predicted at a flow angle of 4.5 degrees or an incidence angle of 4.9 degrees. The

expected flow angle was 7.65 degrees, which corresponds to an incidence angle of 1.75

degrees which was below the predicted stall angle, it was expected that the siall

incidence would increase with decreasing Reynolds number, and making a correction

based on variations of peak diffuser pressure recovery with Reynolds number and inlet

blockage, the stall incidence was predicted to be 3.5 degrees, corresponding to an 0.6a-a

line on Figure 62. Again, stall was not predicted, but the tendency for stall to occur in

the case of air was evident. A compressor performance prediction code should be used to

calculate the rotor exits conditions and, hence, may predict the stall. More analysis is

required to evaluate the stall model for high blockage and low Reynolds number flows. In

addition, an investigation is required to evaluate the dynamic effects of the varying

incidence angle due to the impeller blade wakes on the mean stall incidence.

The DC system has been shown to achieve the required pressure recovery with lower

total pressure loss than predicted. The test series was designed to verify the analytical

approach and prove the usefulness in future design efforts. As was shown, the analysis

does well provided that the throat blockage can be adequately predicted. The difficulty

for the upcomer was trying to predict the time-averaged effect of an unsteady inlet flow

field due to the impeller blade wakes. This may account for the difference between the

original design and the data analysis results as determined in this report. The

downcomer design was dependent on the correct estimation of the upcomer exit blockage
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D'. E'L t C'. F"
i I

c" _jl G.
I'WO-DIMENS|ONAL
DIFFUSER ANALOGY

O._ - DESIGN ilLADE ANGLE !
I " FLOW ANGLE

. m_mf

I Z'NO.O''L'OES- ,,L,, OIA,,T'' 1

D _ . E

11"D wl ,'TO

• o-,=)'- cE- c-t-- _- ._,- T N _Z_'c_
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.-; ",To "
"_""_

Figure 62 - Two-Dimensional Diffuser Analogy

(Ref. 2)

Figure 63

c

I00 -- JET FLOW _HYSTERESIS ZONE

c EVE LOPED

d/'- TWO-DIMENSIONAL STALL

_
20 O LARGE TRANSITORY STALL

I -'_ _ --LINE OF APPRECIABLE

°- ..........

I _ O.So-o%.

I L I t I t I t II I [ I I I w I l]
5 t0 50 lOO

L lW l

Flow Regime Chart for Two-Dimensional Diffuser
(Ref. 4)
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and determination of the extent of the boundary layer growth in the turnaround duct. The

design approach for the constant area turnaround was verified. This was critical for

designing effective downcomers with high diffusion upcomers.
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APPENDIX A - AIR TEST DATA

TEST 1 AND TEST 2
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APPENDIX B - WATER TEST DATA

TEST NUMBER T88A094

TEST NUMBER T88A096

TEST NUMBER T88A097
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INFORMATION FOR READING DATA TABLE SUMMARY AND DATA TABLES:

MDS:

TYPE:

Measurement Data Sequence. Data record within a particular test.

Number of Scans in the data record.

Type of data recorded;
TYPE ,=1 Data are recorded at steady state operating conditions, e.g., HQ.

The data are averaged based on the number of scans in the MDS.

TYPE-2 Data are recorded continuously for transient tests,e.g.
start/shutdown transients and suction performance tests.

Data in tables are averaged over the number of scans and are presented by MDS number.

All TYPE 2 data, since they are averaged, should be disregarded. Due to the volumes of

suction performance data, it was considered too cumbersome for this report. These data

can be made available upon request.
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EDF.DIR "

DIRECTORY FILE: RUN NUM: 88A094

EDF HDR: CROSSOVER HQ AND CAV TEST

I C P: 1 801 2 228 =_9

231 806 807 808 809

818 !20 819 820 821

838 900 901 903 902
4 953 850 851 926

- 1 - edf.dir._lO/06/88 7:42 AM

, T DATE: I0/ 5/88, N M.DS= 17, N CPS = 45

802 803 804 805 230

810 811 812 813 815

822 826 7 5 3
904 905 950 951 952

MDS NSCANS TYPE

1 20

2 181

3 20

4 20

5 2O

6 2O

7 20

8 2O

9 20

!0 20

ll 20

12 20

13 345

14 3

15 579

!6 701

17 20

HEADER

1 PRE TEST STATIC @ 91.2 PSIA

2 STARTUP TRANSIENT

1 HQ @640 FLOW

1 HQ @699 FLOW

1 HQ @640 FLOW

1 HQ @582 FLOW

1 HQ @524 FLOW
1 HQ @466 FLOW

1 HQ @407 FLOW

1 HQ @466 FLOW

1 HQ @524 FLOW

1 HQ @582 FLOW

2 CAV @582 FLOW

2 CAV @524 FLOW

2 CAV @524 FLOW

2 CAV @466 FLOW
1 POST TEST STATIC @90 PSIA

T S TIME: 14:59:35.90, P DATE: 10/06/88, P TIME: 07:30:07

N WS= 70, N W STAT- 74, N STAT = 12

ID W:

I W STAT:

1 801 2 228 229 802 803 804 805 230

231 806 807 808 809 810 811 812 813 815

816 818 120 819 820 S2! 822 826 7 5

3 838 900 901 903 902 904 905 950 951

952 4 953 850 851 926 -152 -25 -26 -i00
-I01 -106 -107 -34 -193 -194 -195 -202 -203 -800

-801 -808 -809 -810 -811 -812 -813 -814 -815 -816
1 801 2 228 229 802 803 804 805 230

231 806 807 808 809 810 811 812 813 802

815 816 818 120 819 820 821 822 826 7

5 3 838 900 901 903 902 904 905 950

951 952 4 953 850 851 926 -152 -25 -26

-i00 -i01 -106 -107 -34 -152 -193 -!94 -195 -202

-203 -800 -801 -152 -808 -809 -810 -811 -812 -813

-814 -152 -815 -816
3 23 204 224 244 264 284 304 324 344

364 384 404 749 752 1331 2032

1 0 2 3 4 5 6 7 8 9

l0 iI 0 0 0 0 12

M W 1 REC:

I N STAT:
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EDF .D IR

DIRECTOKY FILE: RUN NUM: 88A096

EDF HDR: XOVER HQ CAV TEST

I C P: 1 801 2 228 229

231 806 807 808 809

818 120 819 820 821

838 900 901 903 902

4 953 850 851 926

- 1 - edf.dir_lO/09/88 8:03 PM

, T DATE: 10/ 8/88, N MDS= 37, N CPS = 45

802 803 804 805 230

810 811 812 813 815

822 826 7 5 3

904 905 950 951 952

MDS NSCANS TYPE HEADER

1 20 1 PKE STATIC 90

2 158 2 START UP

3 20 1 582 GPM HQ

4 20 1 582 GPM HQ

5 20 1 698 GPM HQ

6 20 1 640 GPM HQ

7 20 1 582 GPM HQ
8 20 1 524 GPM HQ

9 20 1 466 GPM HQ

10 20 1 437 GPM HQ

11 20 1 407 GPM HQ

12 20 1 378 GPM HQ
13 20 1 349 GPM HQ

14 20 1 349 GPM HQ

15 20 1 378 GPM HQ

16 20 1 407 GPM HQ
17 20 1 437 GPM HQ

18 20 1 466 GPM HQ

19 20 1 524 GPM HQ

20 20 1 582 GPM HQ

21 20 1 640 GPM HQ

22 20 1 698 GPM HQ

23 972 2 582 GPM CAr

24 824 2 640 GPM CAV
25 128 2 698 GPM CAr

26 531 2 582 GPM CAV

27 847 2 524 GPM CAV

28 835 2 466 GPM CAr
29 92 2 407 GPM CAr

30 181 2 2ND START UP

31 934 2 582 GPM CAV

32 913 2 407 GPM CAV

33 20 1 POST STATIC 80

34 200 2 3RD START UP
35 20 1 291 GPM HQ

36 1022 2 349 GPM CAr

37 20 1 POST STATIC 90

T S TIME:

N WS = 70,

ID W: 1
231

816
3

952

-I01

-801

I W STAT:

M W ! REC:

7:26:17.20, P DATE: 10/09/88,
N W STAT _ 74, N STAT" 37

801 2 228 229 802

806 807 808 809 810

818 120 819 820 821

838 900 901 903 902
4 953 850 851 926

-106 -107 -34 -193 -194

-808 -809 -810 -811 -812

1 801 2 228 229

231 806 807 808 809

815 816 818 120 819

5 3 838 900 901

951 952 4 953 850

-100 -101 -106 -107 -34

-203 -800 -801 -152 -808

-814 -152 -815 -816

3 23 181 201 221

P TIME: 19:25:39

803 804 805 230

811 812 813 815

822 826 7 5
904 905 950 951

-152 -25 -26 -100

-195 -202 -203 -800

-813 -814 -815 -816

802 803 804 805

810 811 812 813

820 821 822 826

903 902 904 905

851 926 -152 -25

-152 -193 -194 -195

-809 -810 -811 -812

230

802
7

950

-26

-202

-813

241 261 281 301 321
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EDF.DIR

DIKECTORY FILE: RUN NUM: 88A097

EDF HDR: CROSSOVER TEST

I C P: 1 801 2 228 229

231 806 807 808 809

818 120 819 820 821

838 900 901 903 902

4 953 850 851 926

- I - edf. dir_.lO/11/88 8:03 AM

T DATE: 10/I0/88, N MDS- 46, N CPS = 45

802 803 804 805 230

810 811 812 813 815

822 826 7 5 3

904 905 950 951 952

MDS NSCANS TYPE HEADER

1 20 1 PKE STATIC @ 90 PSIA

2 139 2 START UP

3 132 2

4 20 1 463

5 20 1 582

6 20 1 524 GPM
7 20 1 495 GPM

8 20 1 466 GPM

9 20 1 437 GPM ..............

10 20 1 407 GPM

11 189 2 2ND START UP

12 20 1 442

13 20 1 400

14 20 1 375

15 20 i 359

16 20 1 331
17 20 1 302

18 20 1 272

19 20 1 243

20 20 1

21 97 2 3RD START UP

22 252 2 4TH START UP

23 300 2 5TH START UP

24 183 2 6TH STARTUP

25 20 1 441
26 20 1 400

27 20 1 375

28 20 1 359

29 20 1 331

30 20 1 302

31 20 1 272

32 20 1 243

33 20 1 243

34 20 1 272
35 20 1 302

36 20 1 331

37 20 1 359

38 20 1 375

39 20 1 400

40 20 1 442

41 681 2 442 GPM

42 14 2

43 188 2 7TH START UP
44 182 2 START UP

45 175 2 START UP

46 717 2 375 CAV

T S TIME: 14:37:48.70, P DATE: 10/11/88, P TIME: 07:42:58

N WS- 70, N W STAT = 74, N STAT = 46
ID W: 1 801 2 228 229 802 803 804 805 230

231 806 807 808 809 810 811 812 813 815

816 818 120 819 820 821 822 826 7 5
3 838 900 901 903 902 904 905 950 951

952 4 953 850 851 926 -152 -25 -26 -i00

-i01 -106 -107 -34 -193 -194 -195 -202 -203 -800

-801 -808 -809 -810 -811 -812 -813 -814 -815 -816
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